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Introduction

• Monotonic approach

– Internal state variable (ISV) model for metals

– ISV modeling strategy moved to glassy polymers (Bouvard et al., 2010)

– Current efforts to apply ISV modeling strategy to elastomers

• Fatigue approach

– Researchers have historically separated fatigue crack initiation and propagation

– (McDowell et al., 2003) refined the earlier crack stages into incubation and 

microstructurally and physically small crack growth, greatly increasing accuracy

– Microstructure has been incorporated into the multistage modeling for metals at 

CAVS

– Researchers have typically only investigated long crack for elastomers (Mars and 

Fatemi, 2003; Busfield et al., 2002; Chou et al., 2007)

– Current efforts are to add MSC/PSC, INC to fatigue modeling of elastomers and 

incorporate microstructure
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Overview
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Motivation

• Components of focus on tank track

– Bushings

– Road wheels

– Suspension

– Backer pads

• Extreme Loading conditions

– High temperature

– High friction

– Complex loading

• Road wheel backer pad failure at 

one-half of the design target mileage
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Macroscale MSU ISV/MSF 

Models Implementation and Use
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Multiscale Experiments
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Material: Styrene Butadiene 

Rubber

• Random copolymer – styrene and butadiene are 

randomly distributed throughout the polymer chain

• 3:1 butadiene to styrene by weight

• Commercially used in a wide range of projects
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Property Value Units

Glass Transition temperature -40 °C

Temperature range -28 to 76 °C

Tensile strength 4.8 MPa

Stretch Limit 150 %

Density 91.5 Lbs/cu ft

General properties of SBR



Experimental Methods: DMA

• Dynamic mechanical analysis

– TA Instrument Q900 Dynamic Mechanical Analyzer

– Rectangular 1.5 in x 0.135 in x 0.06 in specimen with DMA tensile 

clamps (ASTM D4065-01)

– Oscillated at 1 Hz for a range of temperatures to include 

temperature transitions

– Tg measured using midpoint method
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Experimental Methods: Set-up
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Experimental Methods: 

Monotonic Loading

• Stress state dependence

– Tension

• Strain controlled from extension to get local strain rate

• Strain in the gage measured by laser extensometer

– Compression

• Extensometer mounted on platens to remove compliance

• Strain controlled from extensometer

• Rate dependence

– Strain rates of 0.001, 0.01, 0.1, 1200, 2000, 2600, 3000 /s 

• Temperature dependence

– -5C, 23C and 50C

13 August 2010 10



Experimental Methods: Fatigue 

Loading

• Uniaxial tension

• Servo-hydraulic load frame

• R = 0.5, freq = 2 Hz

• Δε/2 = 20.3, 22.3, 28.1, 31.9 

and 36.3%

• Displacement control

• Displacement-strain 

correlation made using laser 

extensometer
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Results: DMA
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• Storage modulus curve 
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Results: Rate Dependence
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• Rate dependence – material stiffened with increasing 

strain rate

• Compression – strong hysteresis and residual plastic 
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Results:  Temperature 

Dependence
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• Temperature dependence – material softened and had 

an increase in strain to failure at higher temperatures

°C

°C



Results: Microstructure for 

Monotonic Loading
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Results: Microstructure for 
Monotonic Loading - ε̇ = 0.1/s

• Room temperature tension at ε̇= 0.1/s

• Specimen A failed at a lower strain than specimen B

• Specimen A showed a slightly weaker stress-strain response than specimen B

• Due to the large agglomerates of undispersed aluminosilicate and particles debonding from the matrix
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Results: Microstructure for 
Monotonic Loading - ε̇ = 0.01/s
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• Room temperature tension at ε̇= 0.01/s

• Specimen A failed at a lower strain than specimen B

• Due to the large agglomerates of undispersed aluminosilicate and particle debonding 

A B



Results: Microstructure for 
Monotonic Loading - ε̇ = 0.001/s
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• Room temperature tension at ε̇= 0.001/s

• Specimen A failed at a lower strain than specimen B

• Due to the large agglomerates of undispersed aluminosilicate and particle debonding 

A B



Macroscale MSU ISV/MSF 

Models Implementation and Use
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ISV Model:  Approach

• Large variety of models exists for polymers:  Krempl 

(1995), Tervoort (1998), Boyce et al. (1988), Richeton et 

al. (2007), L. Anand et al. (2009),…
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 Development of ISV material model:

 Model generally used for polymers are:

 based on spring/dashpot

Hierarchical Multiscale Approach

- Kinematics

- Thermodynamics   select physically-based ISVs

σ

ε

σA

σB



ISV Model:  Extension to 

Elastomers
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I

II

III

Regime I: Hyperelastic mechanism induced by bond stretching/rotation

Regime II: Strain hardening induced by crosslinking, entanglements, and particles

Regime III: Chain alignment and chain stretching between crosslinking and possible chain crystallization

Material hardening

Chain alignment in the loading 

direction (Anisotropy) 

Defects:

(1) Crosslinking

(2) Particles 

(3) Entanglements



ISV Model:  Development for 

Amorphous Polymers
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: elastic mechanisms such as bond stretching and chains rotation/torsion 

inducing the different conformations of the intramolecular structure

: time-dependent inelastic mechanisms such as permanent chains stretching and 

rotating but also the dissipative mechanism due to the relative slippage of molecular 

chains
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ISV Model:  Kinematics and 

Thermodynamics

• Multiplicative decomposition of deformation gradient

8/13/2010 23

Deformation gradient

Kroner-Lee decomposition

; ;
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;
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ISV Model:  Kinematics and 

Thermodynamics

• Helmholtz Free Energy:
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ISV Model:  Summary
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ISV Model: Model to Experiment 

Comparsion

• Jean-Luc’s slides
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ISV model predicts loading path,

unloading path and time dependence

ISV model response under cyclic

loading at 1 Hz. It shows significant

hysteresis in the first cycle and cyclic

relaxation



Macroscale MSU ISV/MSF 

Models Implementation and Use
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Results: Fatigue Life

• Power law fit:
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Results: Fatigue Loading
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• Significant cyclic stress softening occurred for all strain 

amplitudes



Results: Hysteresis
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Δε/2 = 0.36

Δε/2 = 0.28

Δε/2 = 0.32

Δε/2 = 0.22



Results: Hysteresis
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Half cycle at strain amplitudes of 

0.22, 0.28, 0.32 and 0.36.

Last cycle at strain amplitudes of 

0.22, 0.28, 0.32 and 0.36.



Results: Microstructure for 

Fatigue Loading

• Particle debonding

– 0.5 – 200 μm particles debonded during deformation

– 100 – 200 μm particles initiated significant fatigue cracks

– 2 particles in length scale of focus: calcium carbonate and 

agglomerations of aluminosilicate (clay)

13 August 2010

Δε/2 = 0.20

R = 0.5, 2 Hz

Nf = 198000 cycles



Results: Microstructure for 

Fatigue Loading
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Δε/2 = 0.28

R = 0.5, 2 Hz

Nf = 8908 cycles

Δε/2 = 0.28

R = 0.5, 2 Hz

Nf = 11439 cycles



Results: Microstructure for 

Fatigue Loading

34

Δε/2 = 0.32

R = 0.5, 2 Hz

Nf = 1755 cycles

Δε/2 = 0.32

R = 0.5, 2 Hz

Nf = 5047 cycles
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Results: Microstructure for 

Fatigue Loading
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Δε/2 = 0.36

R = 0.5, 2 Hz

Nf = 258 cycles

Δε/2 = 0.36

R = 0.5, 2 Hz

Nf = 1238 cycles



MultiStage Fatigue Model

13 August 2010 36McDowell, et al., 2003

Ntotal=Ninc+NMSC+NPSC+NLC

 
/

TH

MSC PSC

da
G CTD CTD

dN

 
    

 

 

0.5
' '

1

3
2 1

2 2 2

ij ijs s
s   s

  
     

  
Multiaxial term

1

1
U

R



Mean stress term

Porosity term

0.5625i pa D

Initial crack size

g
incinc

P

NC


2

max
Incubation

MSC/PSC Growth

 RCCCzCC nnmninc  124.0  and  )(

LC Growth




























LCPSCMSC

i

dN

da

dN

da

dN

da

a

,max

or     μm, 250

/

     
2

max

2
11

macro

p

I

n

u

II Ca
S

U
CfCTD 







 








 


gs
f



HCF loading dominated LCF loading dominated

 0TTA
dN

da

LC









for

ATTT 0

CA TTT BT
dN

da

LC








 for

nonpropagating crack threshold thCTD 




















th

f
f

f
f

2
exp11



Conclusions

• DMA testing was performed to investigate the 

viscoelastic properties and transition temperatures

• Material exhibited time and temperature dependence

• Debonding of calcium carbonate particles and 

aluminosilicate agglomerates on the order of 50 to 200 

μm lead to specimen failure for monotonic loading and 

initiated fatigue cracks under fatigue loading

• The ISV model captures both loading and unloading as 

well as rate dependence
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Conclusions

• The MSF model equations need to be extended to 

elastomeric materials as well as calibrated and validated 

on SBR

• Fatigue experiments need to be conducted at lower 

strain amplitudes to investigate the high cycle fatigue 

response of the material
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